
CSCD01 Week 1 Notes
1

Why Do Projects Fail:
- Some of the most common reasons projects fail are:

- Unrealistic or unarticulated project goals.
- Inaccurate estimates of needed resources.
- Badly defined system requirements.
- Poor reporting of the project’s status.
- Unmanaged risks.
- Poor communication among customers, developers, and users.
- Use of immature technology.
- Inability to handle the project’s complexity.
- Sloppy development practices.
- Poor project management.

- Software project failures have a lot in common with airplane crashes. Just as pilots never
intend to crash, software developers don’t aim to fail. When a commercial plane crashes,
investigators look at many factors, such as the weather, maintenance records, the pilot’s
disposition and training, and cultural factors within the airline. Similarly, we need to look
at the business environment, technical management, project management, and
organizational culture to get to the roots of software failures.

- Chief among the business factors are competition and the need to cut costs.
Increasingly, senior managers expect IT departments to do more with less and do it
faster than before. They view software projects not as investments but as pure costs that
must be controlled.

- A lack of upper-management support can also hinder an IT undertaking. This runs the
gamut from failing to allocate enough money and manpower to not clearly establishing
the IT project’s relationship to the organization’s business.

- Frequently, IT project managers eager to get funded resort to a form of liar’s poker,
overpromising what their project will do, how much it will cost, and when it will be
completed. Many, if not most, software projects start off with budgets that are too small.
When that happens, the developers have to make up for the shortfall somehow, typically
by trying to increase productivity, reducing the scope of the effort, or taking risky
shortcuts in the review and testing phases. These all increase the likelihood of error and,
ultimately, failure.

- Sloppy development practices are a rich source of failure, and they can cause errors at
any stage of an IT project.

- Project managers also play a crucial role in software projects and can be a major source
of errors that lead to failure. The most important function of the IT project manager is to
allocate resources to various activities. Beyond that, the project manager is responsible
for project planning and estimation, control, organization, contract management, quality
management, risk management, communications, and human resource management.
Bad decisions by project managers are probably the single greatest cause of software
failures today. Poor technical management, by contrast, can lead to technical errors, but
those can generally be isolated and fixed. However, a bad project management decision,
such as hiring too few programmers or picking the wrong type of contract, can wreak
havoc.



CSCD01 Week 1 Notes
2

Software Process:
- It is:

- A structured set of activities, used by a team to develop software systems.
- The standards, practices, and conventions of a team.
- A description of how a team performs its work.

- Some synonyms of software process are:
- Software Development Process
- Software Development Methodology
- Software Development Life Cycle

- In a nutshell, it is a structured description of how a software development team goes
through.

- Software process is a set of related activities that leads to the production of the
software. These activities may involve the development of the software from the scratch,
or modifying an existing system.

- Over time, people develop new software process models.
- A software process model represents the order in which the activities of software

development will be undertaken. It describes the sequence in which the phases of the
software lifecycle will be performed.

Software Process Model vs. Software Process:
- Software process is a coherent set of activities for specifying, designing, implementing

and testing software systems.
- A software process model is an abstract representation of a process that presents a

description of a process from some particular perspective. When we describe and
discuss about process models, we usually talk about the activities in these processes
such as specifying a data model, designing a user interface, etc and the ordering of
these activities.

- Software process descriptions may include:
- Products: The outcomes of a process activity.
- Roles: Reflect the responsibilities of the people involved in the process.
- Pre and post-conditions: Are statements that are true before and after a

process activity has been enacted or a product produced.
- There are many different software processes but all involve:

- Specification: Defining what the system should do.
- Design and Implementation: Defining the organization of the system and

implementing the system.
- Validation: Checking that it does what the customer wants.
- Evolution: Changing the system in response to changing customer needs.

Plan-Driven and Agile Processes:
- Plan-driven processes are processes where all of the process activities are planned in

advance and progress is measured against this plan.
- In agile processes, planning is incremental which makes it easier to change the

process to reflect changing customer requirements.
- In practice, most practical processes include elements of both plan-driven and agile

approaches.
- There are no right or wrong software processes.



CSCD01 Week 1 Notes
3

Waterfall Method:
- The waterfall model is a sequential (non-iterative) design process, used in software

development processes, in which progress is seen as flowing steadily downwards (like a
waterfall) through the phases of:

1. Requirements analysis
2. Design
3. Implementation
4. Testing (verification)
5. Maintenance

- The result of each phase is one or more documents that should be approved and the
next phase shouldn’t be started until the previous phase has completely been finished.
I.e. Each phase is carried out completely, for all requirements, before proceeding to the
next. Furthermore, this process is strictly sequential. No backing up or repeating phases.

- The waterfall model should only be applied when requirements are well understood and
unlikely to change radically during development as this model has a relatively rigid
structure which makes it relatively hard to accommodate change when the process is
underway.

- Pros:
- Time spent early in the software production cycle can reduce costs at later

stages.
- Suitable for highly structured organizations.
- It places emphasis on documentation which will contribute to corporate memory.
- It provides a structured approach. The model itself progresses linearly through

discrete, easily understandable and explainable phases and thus is easy to
understand.

- It also provides easily identifiable milestones in the development process.
- It is well suited to projects where requirements and scope are fixed, the product

itself is firm and stable, and the technology is clearly understood.
- Simple, easy to understand and follow.
- Highly structured.
- After specification is complete, low customer involvement is required.

- Cons:
- Inflexible partitioning of the project into distinct stages makes it difficult to

respond to changing customer requirements. Therefore, this model is only
appropriate when the requirements are well-understood and changes will be fairly
limited during the design process. However, few business systems have stable
requirements.

- The waterfall model is mostly used for large systems engineering projects where
a system is developed at several sites. In these circumstances, the plan-driven
nature of the waterfall model helps coordinate the work.



CSCD01 Week 1 Notes
4

Alternative Methodologies:
- As companies began to realize that the waterfall method was failing them (large projects

were failing completely or going way over budget) alternatives were sought.
- A gradual trend was in methods that used an incremental development of product using

iterations (almost like smaller waterfalls).
- Iterations could be only a few weeks, but still included the full cycle of analysis, design,

coding, etc.
- These various lightweight development methods were later referred to as agile

methodologies.
- As our models evolve, they encourage software development teams to:

- Be more flexible and adaptive to changing requirements.
- Collect feedback from users more frequently.
- Release code more frequently.

- And then came the term Agile.
- Agile is neither a process nor a model but is a term that describes a process, model, or

a team. Essentially, it means “Flexible and adaptive process/team, suitable for projects
with constantly changing requirements".

Agile Manifesto:
- We value:

- Individuals and interactions over processes and tools.
- Working software over comprehensive documentation.
- Customer collaboration over contract negotiation.
- Responding to change over following a plan.

- There is value to the items on the right, but the left is valued more.
Agile:

- Agility is flexibility. It is a state of dynamic, adapted to the specific circumstances.
- Agile refers to a number of different frameworks that share these values.

I.e. Agile is an umbrella term for a set of methods and practices based on the values and
principles expressed in the Agile Manifesto that is a way of thinking that enables teams
and businesses to innovate, quickly respond to changing demand, while mitigating risk.

- Examples of agile frameworks are:
- Test Driven Development (TDD)
- Extreme Programming (XP)
- Scrum
- Lean Software

Test Driven Development (TDD):
- A concept that started in the late 90s.
- Used by many Agile teams.
- The idea is to write the tests, before you write the code.
- The tests are the requirements that drive the development.
- A software development approach in which test cases are developed to specify and

validate what the code will do. In simple terms, test cases for each functionality are
created and tested first and if the test fails then the new code is written in order to pass
the test and make code simple and bug-free.

- TDD ensures that your system actually meets requirements defined for it. It helps to
build your confidence about your system.

- Traditionally, TDD means:
- Write a failing test.
- Write the (least amount of) code to pass the test.
- Repeat.
- Every now and then refactor/cleanup code.



CSCD01 Week 1 Notes
5

- However, in practice, each team decides when and where it makes sense for tests to
drive development.

- Most teams borrow some of the concepts of TDD, such as the fact that tests are used as
specification/documentation and the fact that we should automate tests in fragile/crucial
areas of your system.

- Software development teams can adopt TDD with different types of testings such as:
- Unit Test
- Integration: Test that all the different units in the system play nicely together.
- Acceptance: Specify customer’s requirement.
- Regression: Verify we didn’t break anything that was working before. Automated

unit tests can be used as regression tests.
- Advantages of TDD:

- Early bug notification:
- Using TDD, over time, a suite of automated tests is built up that you and

any other developer can rerun at will.
- Better designed, cleaner and more extensible code:

- TDD helps developers understand how the code will be used and how it
interacts with other modules.

- TDD allows you to write smaller modules with each having a single
responsibility rather than monolithic modules with multiple responsibilities.
This makes the code simpler to understand.

- TDD forces you to write the bare minimum of production code needed to
pass the tests.

- Confidence to refactor:
- If you refactor code, it might break. By having a set of automated tests,

you can fix those bugs before release.
- Good for teamwork:

- In the absence of any team member, other team members can easily pick
up and work on the code. It also aids knowledge sharing, thereby making
the team more effective overall.

- Good for developers:
- Though developers have to spend more time writing TDD test cases, it

will take a lot less time debugging and developing new features. You will
write cleaner, less complicated code.

Extreme Programming (XP):
- XP is a model that was getting a lot of hype in the late 90s.
- XP is an Agile model, consisting of many rules/practices, one of which is TDD.
- XP is a very detailed model, but in practice, most teams adopt a subset of its rules.
- Some highlights of XP:

- Iterative incremental model.
- Better teamwork.
- Customer’s decisions drive the project.
- Dev team works directly with a domain expert.
- Accept changing requirements, even near the deadline.
- Focus on delivering working software instead of documentation.

- A key assumption of XP is that the cost of changing a program can be held mostly
constant over time. This can be achieved with:

- Emphasis on continuous feedback from the customer
- Short iterations
- Design and redesign
- Coding and testing frequently



CSCD01 Week 1 Notes
6

- Eliminating defects early, thus reducing costs
- Keeping the customer involved throughout the development
- Delivering working product to the customer

- Extreme Programming involves:
- Writing unit tests before programming and keeping all of the tests running at all

times. The unit tests are automated and will eliminate defects early, thus reducing
the costs.

- Starting with a simple design just enough to code the features at hand and
redesigning when required.

- Pair programming which is when two programmers sit at one screen, taking
turns to use the keyboard. While one of them is at the keyboard, the other
constantly reviews and provides inputs.

- Integrating and testing the whole system several times a day.
- Putting a minimal working system into the production quickly and upgrading it

whenever required.
- Keeping the customer involved all the time and obtaining constant feedback.

Scrum:

- Scrum is a flexible, holistic product development strategy where a development team
works as a unit to reach a common goal. Scrum is mainly about the management of
software development projects.

- Sprint: The actual time period when the scrum team works together to finish an
increment. Two weeks is a pretty typical length for a sprint, though some teams find a
week to be easier to scope or a month to be easier to deliver a valuable increment.
During this period, the scope can be re-negotiated between the product owner and the
development team if necessary. This forms the crux of the empirical nature of scrum.
Key features of sprints:

- It is a basic unit of development in a scrum.
- It is of fixed length, typically from one week to a month.
- Each sprint begins with a sprint planning meeting to determine the tasks for the

sprint and estimates are made.
- During each sprint a potentially deliverable product is produced.
- Features are pulled from a product backlog, a prioritized set of high level work

requirements.
- Sprint planning: The work to be performed during the current sprint is planned during

this meeting by the entire development team. This meeting is led by the scrum master
and is where the team decides on the sprint goal. Specific user stories are then added
to the sprint from the product backlog. These stories always align with the goal and are
also agreed upon by the scrum team to be feasible to implement during the sprint. At the



CSCD01 Week 1 Notes
7

end of the planning meeting, every scrum member needs to be clear on what can be
delivered in the sprint and how the increment can be delivered.

- User Story: An informal, general explanation of a software feature written from the
perspective of the end user or customer. The purpose of a user story is to articulate how
a piece of work will deliver a particular value back to the customer. User stories are a few
sentences in simple language that outline the desired outcome. They don't go into detail.
Requirements are added later, once agreed upon by the team.

- Product Backlog: The master list of work that needs to get done maintained by the
product owner or product manager. This is a dynamic list of features, requirements,
enhancements, and fixes that acts as the input for the sprint backlog. It is, essentially,
the team’s “To Do” list. The product backlog is constantly revisited, re-prioritized and
maintained by the Product Owner because, as we learn more or as the market changes,
items may no longer be relevant or problems may get solved in other ways.

- Sprint Backlog: The list of items, user stories, or bug fixes, selected by the
development team for implementation in the current sprint cycle. Before each sprint, in
the sprint planning meeting the team chooses which items it will work on for the sprint
from the product backlog. A sprint backlog may be flexible and can evolve during a
sprint.

- Increment/Sprint Goal: The usable end-product from a sprint.
- Daily Scrum/Daily Standup: A short meeting that happens at the same place and time

each day. At each meeting, the team reviews work that was completed the previous day
and plans what work will be done in the next 24 hours. This is the time for team
members to speak up about any problems that might prevent project completion.
Some features of the daily scrum:

- No more than 15 minutes.
- Meetings must start on-time, and happen at the same location.
- Each member answers the following:

- What have you done since yesterday?
- What are you planning on doing today?
- Are there any impediments or stumbling blocks?

- A scrum master will handle resolving any impediments outside of this meeting
- Scrum Master: The person on the team who is responsible for managing the process,

and only the process. They are not involved in the decision-making, but act as a lodestar
to guide the team through the scrum process with their experience and expertise. The
scrum master is the team role responsible for ensuring the team follows the processes
and practices that the team agreed they would use.

- In traditional agile development software is brought to release level every few months.
Releases, which are sets of sprints, are used to produce shippable versions of software
products.

- A key feature of scrum is that during a project a customer may change their minds about
what they want/need. We need to accept that the problem cannot be fully understood or
defined and instead allow teams to deliver quickly and respond to changes in a timely
manner.

Why Use Agile:
- Demand for higher quality with lower cost.
- Post-mortems of software projects lead to a lot of knowledge gain about what went

right/wrong during the development phase.
- With the waterfall model, we do not have a clear way to predict the future, so

these lessons are always in hindsight.
- Smaller, iterative schedules mean problems can be identified/addressed much

earlier in the cycle.



CSCD01 Week 1 Notes
8

- Agile eliminates waste.
- Making changes at the end of a production cycle is costly. With agile we are more

likely to detect these changes early enough to reduce the costs.
- Iterative design means we build a product in small steps.

- Incrementally add features.
- Software is in working condition at least every few weeks.
- Allows people to test earlier in the development cycle.
- Software improvements happen much earlier and can be fine-tuned rather

then trying to modify the design at the end of a waterfall cycle.
Agile Team Management:

- From the bottom up.
- Teams are empowered to manage the smallest level of details, while leaving the higher

levels to upper management.
- Teams, upon seeing the small amount of ownership they get from solving smaller

problems, take on responsibility for larger problems.
- Head off issues before they become major problems.
- Individuals solve problems with their colleagues.

Agile Project Structure:
- An agile project consists of a series of iterations of development.
- Each interval usually lasts only two to four weeks.
- Developers implement features, called user stories, during each iteration that add value

to the project.
- Each iteration contains a full development cycle:

- Concept
- Design
- Coding
- Testing
- Deployment

- The project is reviewed at the end of each iteration.
- Results are used to direct future iterations.
- Every three to six iterations the project is built up to a release state, meaning that most

major goals are accomplished.
Incremental Development Benefits:

- The cost of accommodating changing customer requirements is reduced as the amount
of analysis and documentation that has to be redone is much less than what is required
with the waterfall model.

- It is easier to get customer feedback on the development work that has been done.
Customers can comment on demonstrations of the software and see how much has
been implemented.

- More rapid delivery and deployment of useful software to the customer is possible.
Customers are able to use and gain value from the software earlier than is possible with
a waterfall process.

Incremental Development Problems:
- The process is not visible. Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce documents that reflect
every version of the system.

- The system structure tends to degrade as new increments are added. Unless time and
money is spent on refactoring to improve the software, regular change tends to corrupt
its structure. Incorporating further software changes becomes increasingly difficult and
costly.



CSCD01 Week 1 Notes
9

Is It True That Only Non-Agile Projects Fail:
- The Scott Ambler survey defines success as a solution being delivered and meeting its

success criteria within the acceptable range defined by the organization, and failure as
the project never delivering a solution.

- The Ambler report concluded that agile projects do not fail more than other projects.
They succeed at the same level as other iterative methodologies.

- However, agile projects face a set of challenges and problems related to applying a
different approach to project management. The top three reasons for agile project failure
are:

1. Inadequate experience with agile methods.
2. Little understanding of the required broader organizational change.
3. Company philosophy or culture at odds with agile values.

Selecting a Development Model:
- For organizations and projects, where experience can be used to plan a course of action

with a good degree of certainty for a positive outcome, a traditional methodology may be
more appropriate than an agile methodology. In this case, the plans can be developed
up-front and then designed, developed, and tested without much variance.

- Agile methodologies are effective when the product details cannot be defined or agreed
in advance with any degree of accuracy. This situation calls for the collaborative
environment between the user and the developer. Agile methodologies are suited for a
dynamic and changing environment.

Key Process Stages:
- The stages are:

1. Requirements specification
2. Software discovery and evaluation
3. Requirements refinement
4. Application system configuration
5. Component adaptation and integration

- Real software processes are interleaved sequences of technical, collaborative and
managerial activities with the overall goal of specifying, designing, implementing and
testing a software system.

- The four basic process activities of specification, development, validation and evolution
are organized differently in different development processes. For example, in the
waterfall model, they are organized in sequence, whereas in the incremental
development they are interleaved.

Software Specification:
- Is the process of establishing what services are required and the constraints on the

system’s operation and development.
- Requirements engineering process involves the following:

- Requirements elicitation and analysis: Is the practice of researching and
discovering the requirements of a system from users, customers, and other
stakeholders. It is the various ways used to gain knowledge about the project
domain and requirements. The various sources of domain knowledge include
customers, business manuals, the existing software of the same type, standards
and other stakeholders of the project. It answers the question “What do the
system stakeholders require or expect from the system?”

- Requirements specification: Defines the requirements in detail. This activity is
used to produce formal software requirement models. During specification, more
knowledge about the problem may be required which can again trigger the
elicitation process.
I.e. It is the process of writing down the user and system requirements into a



CSCD01 Week 1 Notes
10

document. The requirements should be clear, easy to understand, complete and
consistent.
The user requirements for a system should describe the functional and
non-functional requirements so that they are understandable by users who don’t
have technical knowledge. You should write user requirements in natural
language supplied by simple tables, forms, and intuitive diagrams.
The requirement document shouldn’t include details of the system design and
you shouldn’t use any software jargon or formal notations.
The system requirements are expanded versions of the user requirements that
are used by software engineers as the starting point for the system design. They
add detail and explain how the user requirements should be provided by the
system. They shouldn’t be concerned with how the system should be
implemented or designed. The system requirements may also be written in
natural language but other ways based on structured forms, or graphical
notations are usually used.

- Requirements validation: Checks the validity of the requirements. It’s a process
of ensuring that the specified requirements meet the customer needs.

Software Design and Implementation:
- Is the process of converting the system specification into an executable system.
- Software design is designing a software structure that realizes the specification.

Some software design activities include:
- Architectural design: Identifying and defining the overall structure of the

system, the principal components, their relationships and how they are
distributed.

- Database design: Designing the system data structures and how they will be
represented in a database.

- Interface design: Defining the interfaces between system components.
- Component selection and design: Searching for reusable components. If

unavailable, you design how it will operate.
- Software implementation is taking your design and translating into an executable

program.
The software is implemented either by developing program(s) or by configuring an
application system.
Design and implementation are interleaved activities for most types of software system.
Programming is an individual activity with no standard process.



CSCD01 Week 1 Notes
11

Debugging is the activity of finding program faults and correcting these faults.

- The activities of design and implementation are closely related and may be interleaved.
Software Validation:

- Verification and validation (V&V) is intended to show that a system conforms to its
specification and meets the requirements of the system customer.
I.e. It is the process of checking that a software system meets specifications and that it
fulfills its intended purpose.

- Software validation is a dynamic mechanism of testing and validating if the software
product actually meets the exact needs of the customer or not. The process helps to
ensure that the software fulfills the desired use in an appropriate environment. The
validation process involves activities like unit testing, integration testing, system testing
and user acceptance testing.
I.e. Software validation checks if the code actually does what it is supposed to do.

- Software verification is a process of checking documents, design, code, and program
in order to check if the software has been built according to the requirements or not. The
main goal of the verification process is to ensure quality of software application, design,
architecture etc. The verification process involves activities like reviews, walk-throughs
and inspection.
I.e. Software verification checks if the program is built according to the specifications and
design.

- System testing is the process of testing an integrated system to verify that it meets the
specified requirements. The purpose of this test is to evaluate the system’s compliance
with the specified requirements.

- Testing is the most commonly used V&V activity.


